3-1

Basic A* Pathfinding
Made Simple

James Matthews—Generation5
jmatthews@generation5.org

The A algorithm has been the source of much confusion and mystery within the
game programming community. While the goals and basic theory of A* are rela-
tively simple to understand, the implementation of the algorithm can be a nightmare
to realize. This article will hopefully clarify the theory 2nd the implementation of the
A* algorithm. We will look first at the basics of A* as they apply to two-dimensional
maps, and then study a C++ class that implements the algorithm.

An Overview

The A* (pronounced #-star) algorithm will find a path berween two points on a map.
While many different pathing algorithms exist, A* will find the shortest path, if one
exists, and will do so relatively quickly—which is what sets it apart from the others.
There are many flavors of A%, but they all build around the basic algorithm presented
here.

A* is a directed algorithm, meaning it doesn’t blindly search for a path (like a rat
in a maze}, but instead assesses the best direcrion ro explore, sometimes backtracking

to try alternative means. This is what makes the A* algorithm so flexible.

Terms

Before we delve into A*s particulars, we should define a few terms.

A map {or graph) is the space thar A* is using to find a path between two positions.
This doesa't necessarily have to be a map in the literal sense of the meaning. The
map could be comprised of squares or hexagons, be a three-dimensional area, or
even a spatial representation of game trees. The imporrant thing to understand is
that the map is the area within which A* works.

Nodes are the structures thar represent positions on the map. However, the map will
be in a darta structure independent of the nodes. The nodes store information
critical to the A* algorithm as well as positional information; thus, nodes act as a
bookkeeping device to store the progress of the pathfinding search. It is impor-

105

106 Section 3 Pathfinding with A* 3.1

tant to remember that two or mote nodes can correspond to the same position on
the map.

The distance (or heuristic} is used to determine the “suitability” of the node being
explored. We wilt use the term distance, since this arricle will primarily be dealing
with applying A* to traditional two-dimensional maps.

The cost of a node is probably the hardest term to define—an analogy is probably
best. When traveling large distances, various factors are taken into account {time, \
energy, maney, or scenery) that affect whether a certain path is to be taken. Possi-
ble paths between the start and goal nodes will have associated costs, and it is the
job of A* to minimize these costs. Note that there are no set algorithms or equa-
tions to determine the distance and cost of 2 node; they are completely applica-
tion-dependent.

The A* Algorithm

We will now venture into the theory surrounding the A* algorithm. A* traverses the
map by creating nodes that correspond o the various positions it explores. Remember
that these nodes are for recording the progress of the search. In addition to holding
the map location, each of these nodes has three main attributes commonly called £ g,
and 4, sometimes referred to as the feness, goal, and beuristic values, respectively, The
following describes each in more detail:

* gis the cost to get from the starting node to this node. Many different paths go
from the start node to this map location, but this node represents a single path to
it.

*) is the estimarted cost to get from this node to the goal. In this setting, # stands
for heuristic and means educated guess, since we don't really know the cost (thar’s
why we’re looking for a path).

* fis the sum of g and 4. frepresents our best guess for the cost of this pach going
through this node. The lower the value of £ the better we think the path is.

At this point, you mighr ask why we are measuring some distances and guessing
at other distances. The purpose of £ g, and 4 is to quantify how promising a path is up
to this node. Component g is semething we can calculate perfectly. It is the cost
required to ger to this current node. Since we've explored all nodes that led to this
one, we know the value of g exactly. However, component 4 is 2 completely different
beast. Since we don't know how much farther it is to the goal from this node, we are
forced to guess. The betrer our guess, the closer fis to the true value, and the quicker
A* finds the goal with little wasted effort.

Additionally, A* maintains two lists, an Open list and a Closed list. The Open list
consists of nodes that have not been explored, whereas the Closed list consists of ail
nodes that save been explored. A node is considered “explored” if the algorithm has
looked at every node connected to this one, cafculated their £ g and % values, and
placed them on the Open list to be explored in the future.

with A*

itlon on

le being
» dealing

srobably
1t (cime,
n. Possi-
{itis the
of equa-

applica-

verses the
emember
» holding
alled £, g
vely. The

paths go
le path to

, b stands
ost (thats

ath going

1is.

[guessing
path is up
; the cost
zd ro this
- different
e, we are
1e quicker

Open list
sists of all
rithm has

ilues, and

3.1 Basic A* Pathfinding Made Simple 107

Open and Closed lists are required because nodes ace not unique. For example, if
you start at (0,0) and move to (0,1}, it is perfectly valid to move back 1o (0,0). You
must, therefore, keep track of what nodes have been explored and created—this is
what the Open and Closed lists are for. As mentioned earlier, nodes simply mark the
state and progtess of the search.

In pathing, this distinction becomes important because there can be many differ-
ent ways to havigate to the same point. For example, if 2 pathway branches into two

but converges again lates, the algorithm must determine which branch to take.

The Algorithm

Now let us look at A* broken down into pseudo-code.

1. Let P = the starting point.
2. Assign £ gand & values to P,
3. Add P to the Open list. At this point, P is the only node on the Open list.
4. Let B = the best node from the Open list (best node has the lowest Fvalue).
a. If Bis the goal node, then quit—a path has been found.
b. If the Open list is empty, then quit—a path cannot be found.
5. Let C = a valid node connected to B.
a. Assign f; g, and £ values ro C.
b. Check whether Cis on the Open or Closed list.
i. If so, check whether the new path is more efficient (lower fvalue).
1. If so, update the path.
ii. Else, add Cto the Open list.
c. Repeat step 5 for all valid children of B.
6. Repeat from step 4.

A Simple Examplie

Certain steps within the algorithm might not make immediate sense (such as 567),
but for the moment, a very simple step-through should clarify most of the algorithm.,
Look at the example map shown in Figure 3.1.1.

AW N =2 O
W N =2 o

01 2 3 4 01t 2 3 4

(A) (B)
FIGURE 3.1.1 A} Very simple map. B) Path solution.

108

Section 3 Pathfinding with A*

The center point is the starting position (S), and the offset gray point is the end
position (E). The values £ g, and 4 are simple to assign for the starting point. Value g
is zero since there is no cost associated with the first node. Value 4 is calculated diffes-
ently for each application, but for map-based problems, something simple like the
combined cost of the horizontal and verrical differences (called the Manhattan Dis-
tance) is sufficient, since this is a reasonable guess for the remaining cost. Therefore, if
(dxdy) is the destination point and (sx,sy) is the starting point:

h=|desx|+|dysy|
For our problem, (sx,sy) is (2,2) and (dx.dy) is (1,0}, so 4 is calculated as follows:

h=[1-2]+]0-2]
F=1+2=3

Since #is 3 and g is 0, then £ which is the sum of gand 4, equals 3. Generating the
children is simple since all children are valid (all eight adjacent cells can be traveled to}
and all are new nodes to be added to the Open list. The g-value for each child node will
be 1, since g is the cost of getting to the parent (0) plus the cost of moving a position
on the map (in this case, one tile). The h-value will be different for each node, but it is
easy to see that (7,1} will have the lowest score since it is the closest to our goal node.
Therefore, (1, 1} is the best child node and will be the next 1o be explored.

Node (7,1) has four valid children: (7,0) (1,2) (2, 1) and (2,2). Now we have to
determine which nodes are on the Open or Closed lists, and which are new nodes.
Node (2,2} is on the Closed list. It was our original starting point, and all its children
have been opened up. Nodes (7,2) and (2,1) are on the Open list since their children
have yet to be explored (and are children of (2,2)), and, finally, (1,0} is 2 new node.

After assigning £ g, and 4 values to the nodes, it is evident that (7,0) will have the
best score, and upon the next iteration of the A* algorithm, it is discovered that (1,0}
is the goal node.

CAStar—A C++ Class for the A* Algorithm

CAStar is an example C++ class that implements the A* algorithm. It is a little more
complex than a standard class, since it allows the programmer to supply his own cost
and validity functions, as well as a vatiety of callback function pointers. We will not
look at all of the class member furctions; instead, we will focus on the node data
structure and two important member functons. These two member funcions,
tinkchild and UpdateParents, handle most aspects of A*.

Firse, let us ook at the node data structure:

class _asNode {
public:
_asNode(int, int);
int f,g,h;

int X,vy;

int numchildren;

g with A*

is the end
t. Value g
-ed differ-
e lilke the
ittan Dis-
ercfore, if

: follows:

rating the
aveled to)
node wilk
a position
g, butitis
roal node.

re have to
sw nodes.
s children
r children
w node.

I have the
that (1,8)

ittle more

own cost
e will not
aode data
functions,

3.1 Basic A* Pathfinding Made Simple 109

GNTHE €D

int number;

_asNode *parent;
_asNode *next;
_asNode *children{8];
void *datapir;

¥

The node data structure implemented as a mini-class to 2id member variable
initialization (see the source files on the CD-ROM). The member variables are
self-explanatory: 1, g, and h values, x and y variables for positional information, num-
children to track the number of children, and number, a unique identifier for each
map position.

Following, we have a pointer to the parent of the node. The pointer labeled next
is used in the Open and Closed lists (implemented as linked-lists). We then have an
array of pointers to the children (pathfinding on a grid requires an array size of eigh),
The final variable is a void pointer that the programmers can use to associate some
form of data with the node.

CAStar::LinkChild

LinkChild takes two pointers to _asNode structures. One denotes the parent node
{node}, and the other is a temporary node (temp) that only has its x and y variables ini-
tialized. Linkchild implements steps 54 and 54 of the original pseudo-code.

void CAStar::LinkChild{_asNode *node, _asNode *temp}
{
int X = temp->x;
int v = temp->y;
int g = node->g +
udFunc{udCost, node, temp, 0, m_pCBData);
int num = Coord2Num(x,y);

First, we retrieve the coordinate information from temp. Notice how we calculace
4 by using the paren’s g-value and then calling the user-defined cost fancrion, udcost.
The last line generates the unique identifier for our node position.

_ashode *check = NULL;

if (check = Checkiist(m_pOpen, num)) {
node->children[node->numchildren++] = check;

if (g < check->g) {
check->parent = node;
check-»>g = g;
check->F = g + check->h;
}
} else if (check = CheckList(m pClosed, num)) §
node->children[node->numchildren++] = check;

if {g < check-»g) {

110

Section 3 Pathfinding with A*

check->parent = node;
check->g = g;
check->f = g + check->h;

UpdateParents{chsck);
}

If you refer back to our pseudo-code, you will see that we must first check
whether the node exists on either the Open or Closed lists. CheckList takes a pointer
to a list head and a unique identifier to search for; if it finds the identifier, it retucns
the pointer of the node with which it is associated.

If it is found on the Open list, we add it 1o the array of node’s children. We then
check whether the ¢ caleulated from the new node is smaller than check’s g. Remem-
ber that although check and temp correspond to the same position on the map, the
paths by which they were reached can be very different.

If the nade is found on the Closed list, we add it to node’s children. We do a sim-
ilar check to see whether the g-value is lower. If it is, then we have to change not only
the current pacent pointer, but also 2/ connected nodes to update their f, g, h values
and possibly their parent pointers, too. We will look at the function that performs this
after we finish with LinkChild.

else {
_asNode *newnode = new _asMNode(x,y);
newnode->parent = node;
newnode->g = g;
newnode->h = abs(x-m_iDX} + abs(y-m_iDY):
newnode->f = newnode->g + newnode->h;
ngwnode->number = Coord2num({x,y);

AddToOpen(newnode) ;

node->ghildren[node->numchildrent+] = newnode;

}

Finally, if it is neither on the Open or Closed list, we create a new node and assign
the £, g, and n values. We then add it to the Open list before updating its parent’s
child pointer array.

CAStar::UpdateParents

UpdateParents takes a node as its single parameter and propagates the necessary
changes up the A* tree. This implements step 511 of our algorithm!

void CAStar::UpdateParents{"asNode *node)
{

int g = nede->g, ¢ = node->numchildren;

_asNode *kid = NUEL;

3.1 Bas

no

pu

not

check
sointer
(eturns

7e then
emem-

ap, the

) a sim-
ot only
1 values
'ms this

« assign
parent’s

1ecessary

3.1 Basic A* Pathfinding Made Simple

for {int i=0;i<c;i++) {
kid = node->children[i];
if (g+1 < kid-»qg) {
kKid-»g = gt1;
kid-»f = kid-»>g + kid->h;
kid->parent = node;

Push(kid);

This is the first half of the algorithm. It is fairly easy to see what the algorithm
does. The question is, why does it do ir? Remember that node’s g-value was updated
before the cail to UpdateParents. Therefore, we check all children to see whether
we can improve on their g-value as well. Since we have to propagate the changes

back, any updated node is placed on a stack to be recalled in the lawer half of the
algotithm.

_asNode *parent;
while (m_pStack) {
parent = Pop{};
¢ = parent->numchildren;
for {int i=0;i<c;i++) {
kid = parent->g¢hildren[i};

if (parent-»g+i < kid-»>g) {
kid->g = parent->g +
udFunc(wdCost, parent, kid, 0, m_pCBData};
kid->f = kid-»g + kid->h;
kid->parent = parent;

Push{kid};

The res of the algorithm is basically the same as the first half, but instead of using
node’s values, we are popping nodes off the stack. Again, if we update a node, we must
push it back onto the stack to continue the propagation.

Wilizing CAStar

As mentioned, CAStar is expandable and can be easily adapted to other applications.
The main advantage of CAStar is that the programmer supplies the cost and validity
fanctions. This means that CAStar is almost ready to go for any 2D map problems.
The programmer supplies the cost and validity functions, as well as two optional
notification functions by passing function pointers of the following prototype:

typedef int({*_asFunc}(_asMNode *, _asNode *, int, veid *);

112

Section 3 Pathfinding with A*

The first two parameters are the parent and child nodes. The integer is a function-
specific data item (used in callback fanctions), and the final pointer is the m_pCBData
{cost and validity functions) or m_pNCbata (notification functions) as defined by the
progeammer. See the A* Explorer source code and documentation on the CD-ROM
for examples on how to use these features effecdvely.

A* Explorer

A* Explorer is a Windows program that utilizes CAStar and allows the user to explore
many aspects of the A* algorithm. For example, if you would like to look at how A*
solves the simple map given at the beginning of this chapter in Figure 3.1.1, do the
following:

1. Run A* Explorer off of the book’s CD.

2. Selece “File, Open,” and find wery_simple.ase in A* Explorer's directory.

3. Use the Step function (F10) to step through each iteration of A*. Look at
the Open and Closed lists, as well as the A* tree itself.

Alternauvely, if you would like to sec how relative costing (as described in the
next section} affects A*’s final path, open relative_cost.ase and run the A* algorithm
(F9). Now, select “Relative Costing” within the “Pathing” menu and re-run A*,
Notice how the path changes.

A* Explorer has a huge number of features that we don’t have room to cover here,
so take a look at the online help for a complete breakdown of the features, including
breakpoint and conditions, map drawing, and understanding the A* tree.

Ideas and Expansions

The A* algorithm is great because it is highly extensible and will often bend around
your problem easily. The key ro getting A* to work optimally lies within the cost
and heuristic functions. These functions can also yield more realistic behavior if runed
properly. As a simple example, if a node’s altitude determines the cost of its position,
the cost function could favor traversing children of equal altitude (relative costing} as
opposed to minimizing the cost (Figure 3.1.2).

(A) (B)
FIGURE 3.1.2 A) Path generated by normal costing, and B) relative costing.

3.1 Basit

Conclusi

g

3 with A*

function-
/pCBData
«d by the
D-ROM

@ explore
it how A*
.1, do the

&ory.
‘. Look at

sed in the
algorithm

e-run A%

-over here,
inclading

nd around
n the cost
or if tuned
s position,
costing} as

3.1 Basic A* Pathfinding Made Simple 113

This is a good example of how altering the cost function yields more realistic
behavior (in certain scenarios). By adapting the distance and child generadon func-
tions, it is easy 1o stretch A™ o non-map specific problems. Other ideas for enthusias-
tic readers to explore include hexagonal or three-dimensional map support, optimizing
the algorithm, and experimenting with different cost and distance functions.

Of course, one of the best places to look for additional ideas and expansions to A®

lies within the other articles of this book and the Game Programming Gems series of
books!

Conclusion o _ _
A* is a difficulr algorithm to fully understand. On paper, it looks simple, when look-

ing at someone elsc’s code, it sz looks simple—burt understanding it completely can
be a daunting task. Hopefully, afeer reading this chapter, you will understand how A*
works, its potential applications, and ideas on expanding and improving it. Use
CAStar and A* Explorer to help further your experience and knowledge of A*.

A* Resources on the Internet

Generation5: wwﬁ.generationiorg]
The Game AT Page: www.gameai.com/
Hipcode: www.Hipcode.com/

